当前位置:首页 >产品中心>绝缘材料体积表面电阻测定仪>橡胶体积表面电阻率测试仪>ZKWN-121A橡胶体积表面电阻率测试仪
产品分类
Product Category相关文章
Related Articles详细介绍
橡胶体积表面电阻率测试仪
ZKWN-121A
多功能电阻率测定仪
符合标准:
GB/T 1410-2006《 固体绝缘材料体积电阻率和表面电阻率试验方法》
ASTM D257-99《绝缘材料的直流电阻或电导试验方法》
GB/T 10581-2006 《绝缘材料在高温下电阻和电阻率的试验方法》
GB/T 1692-2008 《硫化橡胶 绝缘电阻率的测定》
GB/T 2439-2001《硫化橡胶或热塑性橡胶 导电性能和耗散性能电阻率的测定》
GB/T 12703.4-2010 《纺织品 静电性能的评定 第4部分:电阻率》
GB/T 10064-2006_《测定固体绝缘材料绝缘电阻的试验方法》
GB 1672-1988 液体增塑剂体积电阻率的测定
橡胶体积表面电阻率测试仪-概述
本电阻利用最新的测控技术,在GEST121仪器基础上,进行升级,能够测试绝缘电阻、体积电阻、表面电阻,并且能够自动计算电阻率.,同时可以对测试数据进行打印
本仪器具有精度高、显示迅速、性好稳定、读数方便, 适用于橡胶、塑料、薄膜、及粉体、液体、及固体和膏体形状的各种绝缘材料体积和表面电阻值的测定。本仪器除能测电阻外,还能直接测量微弱电流。
适用范围
1.1这些测试方法涵盖了直流绝缘电阻率、体积电阻率和表面电阻率的测量步骤。通过试样、电极的几何尺寸和这些测量方法可以计算得到电绝缘材料的
体积和表面电阻,同时也可以计算得到相应的电导率和电导。
1.2这些测试方法不适用测量适度导电的材料的电阻和电导。采用测试方法D4496来表征这类材料。
1.3这个标准描述了测量电阻或电导的几种可替换的方法。某种材料的测试方法是采用适用于该材料的标准ASTM测试方法,而且这种标准测试方法
定义了电压应力的极限值和有限的通电时间,以及试样的外形和电极的几何形状。这些单个的测试方法能更好的表示出结果的精度和偏差。
1.4测试步骤出现在下列部分中:测试方法或步骤部分
1.5 这个标准并没有列出与其应用相关的所有安全方面的考虑。使用该标准的用户需要建立适当安全、健康的操作规范和确立使用前监管限制的适用范围。
2、参考文件
2.1 ASTM标准
D150 电绝缘固体的交流损耗特性和介电常数的测试方法
D374 电绝缘固体的厚度的测量方法
D1169 电绝缘液体的电阻率的测试方法
D1711 与电绝缘体相关的术语
D4496 适度导电材料的直流电阻和电导的测试方法
D5032 通过水甘油溶液保持恒定相对湿度的做法
D6054 处理测试用电绝缘材料的方法
E104 通过水溶液保持恒定的相对湿度的做法
2、仪器设备的选择和测试方法
2.1 电源——需要稳定的直流电压。经证实,电池或其他的稳定直流电压适合使用。
2.2 保护电路——不论是用两个电极(没有保护)测量绝缘材料的电阻或是用三端系统(两个电极加上保护),都需要考虑测试仪器和测试试样之间的电气连接。
如果测试试样离测试仪器有一段距离,或测试试样在潮湿环境下测试,或试样的1015电阻相对较高(10-10欧姆),在测试仪器和测试设备之间很容易存在寄生阻力
路径。保护电路可以最小化这些寄生路径的干扰。
2.2.1 有保护电极——用同轴电缆(其核连到被保护电极上,保护层连到保护电极上)在测试设备和测试试样之间建立保护良好的连接。此处并没有强制使用同
轴电缆(其保护层连到保护电极上)作为无保护的导线,虽然其使用能减小背景噪声。
2.2.2 无保护电极——用同轴电缆,其核连到一个电极上,保护层距离连核导线的终点约1cm左右
2.3 直接测量——用任何具有所需灵敏度和精度(通常10%足够)的设备都可以测量固定电压下通过试样的电流。有效的测量电流的设备包括静电计、带指示表
的直流放大器以及电流计。附录X3中给出了典型的测量方法和电路。如果测试设备的刻度直接以欧姆为单位,测量电阻将不需要通过计算。
2.4 对比法——可能会使用惠斯特通桥回路来对比试样和标准电阻器的电阻。
2.5 精度和偏差的考量:
2.5.1通用——作为一项仪器选择的指南,相关的注意事项已总结列出在表二中,但这并不意味着所举例子是合适的选择。该表无意指出各种方法本身灵敏度
的极限和偏差,而是现代设备存在的明显的极限范围。在任何情况下,只有通过仔细的挑选和组合使用仪器设备,才能达到或超越这种极限。必须强调的是,考
虑的误差仅仅是仪表误差。而附录X1中讨论的误差是完全不同的。其与后者的联系是,表二的最后一列列出了采用各种方法通过被保护电极和保护系统间绝缘
电阻分流的电阻值。一般说来,该电阻值越小,不适当的分流引起偏差的概率越小。
注解2——不管采用何种测量方法,只有通过仔细分析所有的数据来源和误差,才能获得最高的精度。从电路组成元件出发建立测量方法或者获得完全集成的设备都是可行的。一般情
况下,采用高灵敏度电流计的测量方法比采用指示表和记录仪的方法需要更加稳固的安装。采用诸如电压表、电流计、直流放大器和静电计等指示器件的方法需要程度的人工调试,
而且方便读数,但是实验人员需要在某一特定时间读数。惠斯通电桥和电位计方法要求实验人员在保持平衡时聚精会神,但是特定时间的设置可以再空余
时间读取。
2.5.2 直接测量:
2.5.2.1 电流计-电压计通过电流-电压法测量电阻的最大误差百分率是电流计指示、电流计易读性和电压计指示的误差百分率的总和。例如:对于灵敏度为每刻
度500pA的电流计,将500V的电压施加到40GΩ(电导25pS)的电阻上时,电流计将偏离25个刻度线。如果该偏差能读到最近的0.5个刻线,而且标定误差是观测值的
±2%,合成的电流计误差不会超过±4%。如果电压表的误差是满刻度的±2%,电压表的读数达到满刻度时,测量电阻的最大误差是±6%,当电压表的读数达
到满刻度的1/3时,测量电阻的最大误差是±10%。满刻度附近读数的吸引力是显而易见的。
2.5.2.2 电压计-电流计计算值中最大的误差百分率是电压Vx、Vs和电阻Rs误差百分率的总和。Vs和Rs的误差一般更加取决于使用设备的特征而不是具体的测
试方法。决定Vs误差的最重要因素是指示误差、放大器零点漂移以及放大器增益的稳定性。当拥有现代设计良好的放大器或静电计,增益稳定性通常就显得不
那么重要了。在现有的技术手段下,直流电压放大器或静电计的零点漂移不能被消除,但是却可以变得足够慢,这点对于测量过程比较重要。对于设计良好的转
化器型的放大器,零点漂移几乎是不存在的。所以,图X1.2(b)中的无效方法在理论上比采用指示器和提供精确电位计电压的方法误差更小。Rs的误差在一定
程度上取决于放大器的灵敏度。对于给定电流的测量,放大器的灵敏度越高,越有可能低估电阻值,测量过程中可以使用高精度的绕线标准电阻器。这种放大器
可以得到,偏差为±2%的100 GΩ标准电阻也可以获得。如果10mV电压输入放大器和静电计产生的满刻度偏差不超过2%,那么施加500V电压,当电压计达
到满刻度时,测量5000TΩ电阻的最大误差为6%,当电压计达到1/3满刻度时,测量测量5000TΩ电阻的最大误差为10%。
2.5.2.3 比较式检流计计算电阻或电导的最大百分误差由Rs的百分误差、检流计的偏差或放大器读数和电流敏感度独立于偏差的假设总和给出。后面的假定是正确的,在一个良好的、现代检流计(对于一个直流电流放大器而言,1/3刻线的偏向)的有用量程(超过1/10满刻度)范围内误差为2%。
Rs的误差取决于使用电阻器的类型。但是,误差低至0.1%的1MΩ的电阻值也可以测量得到。当检流计和直流放大器在满刻度偏转时灵敏度可达10nA时,
将500V的电压施加到5TΩ的电阻上产生1%的偏差。在此电压下,由于具有前5述的标准电阻以及Fs=10,ds值大约为满刻度偏转的一半,其读数误差不超过
±1%。如果dx大约是满刻度偏转的1/4,其读数误差不会超过±4%,可以测量200GΩ量级的电阻,且最大偏差不超过±5.5%。7.5.2.4 电压变化率
测试结果的精确度直接与施加电压的测量的精度和静电计读数随时间的变化率成正比,静电计开关开启的时间以及所采用的刻度范围应使时间能精确测定
和得到满刻度读数。在这些条件下,精度能与其他测量电流的方法相比。
2.5.2.5 比较电桥——当探测器具有足够的灵敏度,计算电阻的最大百分误差是电桥各臂A、B和N百分误差的总和。当探测器的灵敏度是1mV每刻度线时,在
电桥上施加500V的电压,R=1GΩ,1000TΩ的电阻将会产生1刻度线的检测偏N差。假设忽略误差R和R,R=1GΩ,且其偏差为±2%,电桥与探测器的刻度
ABN线相称,此时可以测量100TΩ的电阻,且最大偏差为±6%。
2.6 许多制造商都能提供满足这种方法要求的组件或专用系统,可以参考已经提供仪器信息的系列公司的设备数据库。
产品咨询
微信公众号