当前位置:首页 >产品中心>绝缘体积表面电阻率测试仪>砼电阻率仪>进口电阻率仪
产品分类
Product Category相关文章
Related Articles详细介绍
进口电阻率仪
该标准发布在名为D 257的标准文件中;紧跟标准文件名称后的数字表示最初采用的年
份,对于修订版本而言,表示最近一次修订的年份。括号里的数字表示最近一次通过审批的
年份,上标ε表示自从最后一次修订或通过审批以来的编辑性的修改。
1、适用范围
1.1这些测试方法涵盖了直流绝缘电阻率、体积电阻率和表面电阻率的测量步骤。通过试样、电极的几何尺寸和这些测量方法可以计算得到电绝缘材料的
体积和表面电阻,同时也可以计算得到相应的电导率和电导。
1.2这些测试方法不适用测量适度导电的材料的电阻和电导。采用测试方法D4496来表征这类材料。
1.3这个标准描述了测量电阻或电导的几种可替换的方法。某种材料的测试方法是采用适用于该材料的标准ASTM测试方法,而且这种标准测试方法
定义了电压应力的极限值和有限的通电时间,以及试样的外形和电极的几何形状。这些单个的测试方法能更好的表示出结果的精度和偏差。
1.4测试步骤出现在下列部分中:测试方法或步骤部分
1.5 这个标准并没有列出与其应用相关的所有安全方面的考虑。使用该标准的用户需要建立适当安全、健康的操作规范和确立使用前监管限制的适用范围。
2、进口电阻率仪-参考文件
2.1 ASTM标准
D150 电绝缘固体的交流损耗特性和介电常数的测试方法
D374 电绝缘固体的厚度的测量方法
D1169 电绝缘液体的电阻率的测试方法
D1711 与电绝缘体相关的术语
D4496 适度导电材料的直流电阻和电导的测试方法
D5032 通过水甘油溶液保持恒定相对湿度的做法
D6054 处理测试用电绝缘材料的方法
E104 通过水溶液保持恒定的相对湿度的做法
3、术语
3.1 定义——下列定义来自于术语D1711中,并被应用到本标准所使用的术语中。
3.1.1 电导,绝缘,n——两电极之间(或试样中)总的体积和表面电流与两电极间直流电压之比。
3.1.1.1 讨论——绝缘体的电导是其电阻的倒数。
3.1.2 电导,表面,n——两电极间(试样表面)的电流与两电极间的直流电压之比。
3.1.2.1 讨论——(一些体积电导不可避免的包含在实际的测量中)表面电导是表面电阻的倒数。
3.1.3 电导,体积,n——两电极间试样体积范围内的电流与两电极间直流电压之比。
3.1.3.1 讨论——体积电导是体积电阻的倒数。
3.1.4 电导率,表面,n——表面电导乘以试样的表面尺寸比(电极间的距离除以电极的宽度,这规定了电流路径),如果两电极位于正方形材料的对边上,表面
电导率在数值上等于两电极间的表面电导。
3.1.4.1 讨论——表面电导率用西门子来表示,通常为西门子/平方(正方形材料的尺寸与材料属无关)。表面电导率是表面电阻率的倒数。
3.1.5 电导率,体积,n——体积电导乘以试样的体积尺寸比(电极间的距离除以电极的截面积),如果电极位于单位立方体相对的面上,体积电导率在数值上等于两电极间的
体积电导。
3.1.5.1 讨论——体积电导率的单位是S/cm或S/m,体积电导率是体积电阻率的倒数。
3.1.6 适度导电,adj——描述体积电阻率在1到10000000Ω-cm的固体材料。
3.1.7 电阻,绝缘,R,n——施加在两电极间(或在试样上)的直流电压与它们i之间的总体积和表面电流之比。
3.1.7.1 讨论——绝缘电阻是绝缘电导的倒数。
3.1.8 电阻,表面,R,n——施加在两电极间(试样表面)的直流电压与它们之s间的电流之比。
3.1.8.1 讨论——(一些体积电阻不可避免的包含在实际的测量结果中)表面电阻是表面电导的倒数。
3.1.9 电阻,体积,Rv,n——施加在两电极间(或在试样中)的直流电压与它们之间的试样中的电流之比。
3.1.9.1 讨论——体积电阻是体积电导的倒数。
3.1.10 电阻率,表面,ρs,n——表面电阻乘以试样的表面尺寸比(电极宽度除以电极间的距离,规定了电流路径),如果两电极位于正方形材料的对边上,表
面电阻率在数值上等于两电极间的表面电阻。
3.1.10.1 讨论——表面电阻率用欧姆表示,通常为欧姆/平方(正方形材料的尺寸与材料属无关)。表面电阻率是表面电导率的倒数。
3.1.11 电阻率,体积,ρv,n——体积电阻乘以试样的体积尺寸比(两电极间试样的截面积除以电极间的距离),如果电极位于单位立方体相对的面上,体积电
阻率在数值上等于两电极间的体积电阻。
3.1.11.1 体积电阻率的常用单位是Ω-cm或Ω-m。体积电阻率是体积电导率的倒数。
4、测试方法概述
4.1 材料样品或电容器的电阻或电导是通过测量规定条件下的电流或电压降得到的。通过使用合适的电极系统有可能分别测量表面和体积电阻或电导。当所需
的试样和电极尺寸已知时,电阻率和电导率可以通过计算得到。
5、意义和使用
5.1 绝缘材料被用来隔绝电气系统中的部件和将部件与地隔绝,同时也为部件提供力学支撑。为了达到这个目的,希望部件的绝缘电阻在与可承受的力学、化学
和耐热性一致的前提下能够尽可能的高。由于绝缘电阻或电导包含了体积和表面电阻或电导,当试样与电极与其实际使用过程中的形状相同时,测量值最为有用。
表面电阻或电导随湿度变化很快,然而体积电阻或电导却变化很慢,尽管体积电阻或电导最终的变化可能更大。
5.2 电阻率或电导率能用来间接预测一些材料的低频介质击穿和介质损耗角,电阻率和电导率经常被用来间接地表征含水量、固化度、机械连接和各种类型的材
料退化。这些间接测量的有效性取决于理论或实验研究相关联的程度。表面电阻的下降可能导致电介质击穿电压的升高,因为电场强度降低了,或者导致电介质
击穿电压的降低,因为应力作用的面积减小了。
5.3 所有的绝缘电阻或电导取决于充电时间和施加的电压值(平常的环境变量除外)。这点必须清楚的知道,才能保证电阻和电导的测量值有意义。在电气绝缘
材料行业内,表观电阻通常指任意充电时间下得到的电阻值。
5.4 体积电阻率或电导率可以从电阻和尺寸数据中计算得到,这有助于设计具体应用中的绝缘体。电阻率或电导率随温度和湿度的变化可能很大,而且为具体工
作条件设计时,必须注意这点。体积电阻率和电导率的测定经常用来检查绝缘材料与其工艺相关的均匀性,或者用来检测影响材料质量而又不容易被其他方法检
测到的导电杂质。
21
5.5 在一般实验条件下,如果通过试样上测得的数据计算出的电阻率高于1019Ω·cm(10Ω·m),那么该结果的有效性是值得怀疑的,因为常用的测试设备
是有局限性的。
5.6 表面电阻和电导不能被精确测量,只能得到近似值,因为一些体积电阻和电导始终包含在测量结果中。表面电阻和电导的测量值也会受到表面污染的影响。
表面污染及其积累速率受到很多因素的影响,包括静电和界面张力。这些可能影响表面电阻率。当涉及到污染时,我们认为表面电阻率或电导率与材料属性有关,
但是在通常意义上表面电阻率或电导率不是电绝缘材料的一种材料属性。
6、电极系统
6.1 制作电极的绝缘材料应该是一种容易应用、能与试样表面亲密接触,而且不因电极电阻或试样污染而引起明显误差。在测试条件下,电极材料应该能耐腐蚀。
对于组装试样的测试,例如通孔套管、电缆等等,采用的电极是试样的一部分或者是它的配件,绝缘电阻或电导的测量包含电极污染或配件材料的影响,而且在
实际使用中一般与试样性能有关。
6.1.1 接线柱和锥形针电极,提供了一种在刚性绝缘材料上施加电压来测量其电阻和电导性质的方法。这些电极在某种程度上模拟实际的使用条件,
例如仪表盘和接线板上的接线柱。在绝缘材料的层压板表面树脂含量很高的情况下,采用锥针形电极得到的绝缘电阻可能比采用接线柱电极得到的小一些,这是锥形
针电极与绝缘材料的接触更加紧密。测得的电阻或电导值受每根锥形针与绝缘材料接触、针的表面粗糙度以及绝缘材料上孔洞平滑度的影响。从不同试样得出结
果的重复性不好。
6.1.2 金属条的主要设计目的是评价弹性胶带和很薄的固体试样的绝缘电阻和电导,这是一种非常简单和方便的控制电气质量的方法。当绝缘材料的宽度
比厚度大得多时,这种布置在获得表面电阻或电导的近似值方面能够取得更加令人满意的效果。
6.1.3 具有商业应用的银漆(图4,图5和图6)具有很高的导电性,不论是空气干燥还是低温干燥的品种都具有能让水气渗透通过的多孔结构,因此施加电极后
能对测试试样进行特定的条件处理。在研究电阻受湿度的影响和随温度的变化方面,这是一项非常有用的特征。然而,在使用导电涂料作为电极材料之前,必须
确保涂料中的溶剂不会腐蚀材料,从而改变它的电气性质。配置好的刚毛刷可能会使保护电极获得相当平滑的边缘。然而,对于圆形电极,刻线圆盘和画电极轮
廓线的银漆以及刷子包围区域的填料的使用使保护电极的边缘更加锋利。测试时可能会使用到一条窄的屏蔽胶带,避免了使用的压敏胶合剂污染试样表面。如果
电极漆是喷射在上面的,可能还会使用到夹紧的外罩。
6.1.4 如果喷镀金属能与测试试样之间形成良好的粘接,测试时可能会使用它)。薄喷电极在能尽快投入使用方面具有一些优势,其多孔结构可
能使试样能进行调整处理,但这点需要证实。必须使用窄带胶带或夹紧外罩使保护和被保护电极之间产生一条缝隙,使用不污染缝隙表面的胶带。
6.1.5 蒸发金属可能使用在与6.1.4中相同的条件下。
6.1.6 金属箔可能会被应用到试样表面作电极。用于电介质电阻或电导研究的金属箔的一般厚度是6-80μm。铅箔和锡箔最为常用,而且经常使用最少量
的凡士林、硅油、油或其他合适的粘接材料将其粘接在测试试样上。这种电极在应用时需要通过足够平顺的压力消除所有的褶皱,而且在箔纸边缘多出的胶粘剂可以通过拭
擦纸清理干净。一种非常有效的方法是用一个又硬又窄的滚筒(10-15mm宽)在表面向外滚动,直到滚筒在试样上没有留下明显的痕迹。该技术仅在具有平坦平
面的试样上才能取得满意的效果。谨慎操作可使胶粘剂的膜厚减小到2.5μm。由于薄膜与试样串联,这将导致测量电阻过高。这个误差对于厚度小于250μm的
低电阻率试样可能过大。硬滚筒也可以将尖锐颗粒压进或穿过薄膜(50μm)。箔电极不具有孔隙结构,因此使用该电极将不会导致测试试样受环境影响。在温度
上升时,胶粘剂可能会失去其有效性,这就迫切需要使用备份金属平板。在合适的切割机的帮助下,可以从电极上切下一适当宽度的窄条形成保护电极和被保护
电极。这种三端试样一般不能用来进行表面电阻和电导测量,因为油脂仍然残留在缝隙表面。想要在不影响电极邻近的边缘的前提下清理整个缝隙的表面是非常
困难的。
6.1.7 可以将分散在水或其他合适介质中的胶体石墨(图4)刷在无孔的薄片绝缘材料上形成风干的电极。可能会用到屏蔽胶带和夹紧的外罩(6.1.4)。这种电极
材料的使用需要满足下列所有条件:
6.1.7.1 测试材料必须保证石墨涂层在测试前不会发生剥离。
6.1.7.2 测试材料必须不容易吸收水分。
6.1.7.3 对试样的处理必须在干燥的气氛中(程序B,实行D6054),而且测量必须在相同的气氛下进行
6.1.8 液态金属给出的测量结果令人满意,而且可能是有效电阻测量中获得与试样必要接触的最好方法。液态金属形成的上部电极应该受到不锈钢圈的限制,通
过在离液态金属较远的一侧刨边使每个钢圈较低的边缘变得尖锐。
6.1.9 平板金属可以被用来测试常温和高温下的韧性材料和可压缩材料。它们可能是圆形或矩形的。为了保证与试样的紧密接触,通常需要相当大的压力。
研究发现140-700KPa的压力能取得满意的效果。
6.1.9.1 在某些电池设计中发现将平板金属电极系统进行改进可以用来测量油脂或填料混合物。这些电池是预先装配的,而且要么将测试材料加入固定电极之间的电池中,要么将电极插入材料中直至电极间距达到预先确定的值。这些电池中
电极的布置导致有效的电极区域和电极间距很难测量,每个电池常数K(与表一中的A/t因子等价)都能从下面的等式中获得:K=3.6πC=11.3C (1)
其中:K的单位是厘米C的单位是微微法拉,表示以空气为电介质的电极系统的电容,C的测试
符号:
A=采用特定布置下,测量电极的有效面积。
P=采用特定布置下,被保护电极的有效周长。
Rv=实测体积电阻,单位欧姆。
Gv=实测体积电导,单位西门子。
Rs=实测表面电阻,单位欧姆。
Gs=实测表面电导,单位西门子。
t=试样的平均厚度。
a,b=矩形电极的边长。
ln=自然对数所有试样尺寸均以厘米为单位。
6.1.10导电橡胶已作为电极材料使用,而且具有很快速和容易加在试样上以及从试样上移除的优点。由于电极仅在测试时使用,因此并不妨碍试样受环
境影响的过程。导电橡胶材料必须置于适当的金属盘上,而且必须足够柔软,这样在施加适当压力时,电极与试样能获得有效的接触。
注解1——有证据表明用导电橡胶电极获得的电导率值总比锡箔电极获得的小20-70%。当只要求数量级的精确性的时候,而且接触误差能忽略时,一组适当设计的导电橡胶电极能
提供一种快速测定电导率和电阻率的方法。
6.1.11 测试电线和电缆的绝缘性时,水被广泛的用作电极。试样的两端必须露出水面,而且沿着绝缘物渗漏的长度可以忽略。是否需要在试样的每一端施加保护,
可以参考特定电线和电缆的测试方法。为了实现标准化,可以向水中加入氯化钠形成浓度为1.0-1.1%的氯化钠溶液,从而保证足够的导电性。已有报道证实形成浓度为1.0-1.1%的氯化钠溶液,从而保证足够的导电性。已有报道证实
7、仪器设备的选择和测试方法
7.1 电源——需要稳定的直流电压。经证实,电池或其他的稳定直流电压适合使用。
7.2 保护电路——不论是用两个电极(没有保护)测量绝缘材料的电阻或是用三端系统(两个电极加上保护),都需要考虑测试仪器和测试试样之间的电气连接。
如果测试试样离测试仪器有一段距离,或测试试样在潮湿环境下测试,或试样的1015电阻相对较高(10-10欧姆),在测试仪器和测试设备之间很容易存在寄生阻力
路径。保护电路可以最小化这些寄生路径的干扰。
7.2.1 有保护电极——用同轴电缆(其核连到被保护电极上,保护层连到保护电极上)在测试设备和测试试样之间建立保护良好的连接。此处并没有强制使用同
轴电缆(其保护层连到保护电极上)作为无保护的导线,虽然其使用能减小背景噪声。
7.2.2 无保护电极——用同轴电缆,其核连到一个电极上,保护层距离连核导线的终点约1cm左右
X1.6 试样轮廓
X1.6.1 试样绝缘电阻或电导的测量值来源于其体积和表面电阻或电导的合成效果。由于组件的相对值随材料的不同而变化,通过使用图1、图2和图3的电极
系统对比不同材料通常是不确定的,如果通过使用这些电极体系之一测得材料A比材料B有更高的绝缘电阻,并不能保证在其应用中比B具有更高的电阻。
X1.6.2 有可能设计试样和合适的电极配置用于分别评估体积电阻或电导和同一试样的近似表面电阻或电导。一般说来,这要求至少3个如此安排的电极使我们
能够选择电极对,因为测量电阻或电导主要需要选择体积电流路径或表面电流路径,而不是将这两者都算上。
X1.7 测量电路的不足
X1.7.1 许多固体介电试样的绝缘电阻在标准实验条件下很高,接近或超过表2中给出的最大测量极限值。除非极度关注测量电路的绝缘性,得到的测量值更多
的是设备的极限值而不是材料本身。因此,可能由于试样分路过多,参考电阻或者电流测量设备引起未知的泄露电阻或电导和其他参数大小的变化,从而导致测量的误差。
X1.7.2 电解质、接触或者热电势可能存在于测量电路中,来源于外界的泄露可能造成虚假电动势。除非在电流计和分流器的低电阻电路中,热电势一般并不重要。
当热电势存在时,检流计零点会出现随机的漂移。由气流造成的缓慢漂移可能很麻烦。电解电动势通常与潮湿试样和不同金属有关,但是当几片相同金属与潮湿
试样相接触时,高电阻探测器的保护电路中可以得到20mV或更高的电动势。如果电压施加在保护电极和被保护电极之间,在电压移除之后,极化电动势可能仍
然存在。真实的接触电动势只能通过静电计检测,并且它不是误差的来源。术语“虚假电动势"有时适用于电解电动势。为了保证不产生任何因素引起的虚假电
动势,在施加电压之前和移除电压之后都应该能观测到检测设备的偏差。如果这两者的偏差一样或者接近一样,可以对测量电阻或电导进行小范围的修正。如果
两者的偏差差别很大,或者接近测量的偏差,那么将有必要找出并且消除虚假电动势的来源。用于连接的屏蔽电缆中电容的变化能导致严重的困难。
X1.7.3 其中包含可检测的试样电容,施加电压的监控以及瞬时稳定性也应这样使电阻和电导的测量能达到规定的精度。外加电压短时间的瞬变和相对长时间的漂
移可能导致虚假电容的充放电,这将极大的影响测量的精度。尤其在电流测量手段中,这是一个很严重的问题。仪器测量的电流来源于电压瞬变,关系式为I=CxdV/dt。指针偏转的幅度和速率取决于下列因素:0
X1.7.3.1 试样的电容
X1.7.3.2 测量电流的大小
X1.7.3.3 电压瞬变的大小和持续时间,以及变化速率
X1.7.3.4 所使用的稳定电路提供具有各种特征传入瞬变的恒定电压的能力。
X1.7.3.5 与电流测试仪器的周期和衰减相比,能提供恒定时间的完整测试电路。
X1.7.4 电流测试仪器范围的改变可能会引入电流瞬变
产品咨询
微信公众号