欢迎来到北京中科微纳精密仪器有限公司!
咨询热线

13011285763

当前位置:首页 >产品中心>绝缘材料体积表面电阻测定仪>砼电阻率仪>薄层电阻率测试仪

薄层电阻率测试仪

简要描述:薄层电阻率测试仪-该标准发布在名为D 257的标准文件中;紧跟标准文件名称后的数字表示最初采用的年

份,对于修订版本而言,表示最近一次修订的年份。括号里的数字表示最近一次通过审批的

年份,上标ε表示自从最后一次修订或通过审批以来的编辑性的修改。

  • 产品型号:
  • 厂商性质:生产厂家
  • 更新时间:2022-01-17
  • 访  问  量:27

详细介绍

薄层电阻率测试仪

该标准发布在名为D 257的标准文件中;紧跟标准文件名称后的数字表示最初采用的年

份,对于修订版本而言,表示最近一次修订的年份。括号里的数字表示最近一次通过审批的

年份,上标ε表示自从最后一次修订或通过审批以来的编辑性的修改。

1、适用范围

1.1这些测试方法涵盖了直流绝缘电阻率、体积电阻率和表面电阻率的测量步骤。通过试样、电极的几何尺寸和这些测量方法可以计算得到电绝缘材料的

  体积和表面电阻,同时也可以计算得到相应的电导率和电导。

1.2这些测试方法不适用测量适度导电的材料的电阻和电导。采用测试方法D4496来表征这类材料。

1.3这个标准描述了测量电阻或电导的几种可替换的方法。某种材料的测试方法是采用适用于该材料的标准ASTM测试方法,而且这种标准测试方法

    定义了电压应力的极限值和有限的通电时间,以及试样的外形和电极的几何形状。这些单个的测试方法能更好的表示出结果的精度和偏差。

1.4测试步骤出现在下列部分中:测试方法或步骤部分


1.5 这个标准并没有列出与其应用相关的所有安全方面的考虑。使用该标准的用户需要建立适当安全、健康的操作规范和确立使用前监管限制的适用范围。

2、薄层电阻率测试仪-参考文件

2.1 ASTM标准

D150 电绝缘固体的交流损耗特性和介电常数的测试方法

D374 电绝缘固体的厚度的测量方法


3、术语

3.1 定义——下列定义来自于术语D1711中,并被应用到本标准所使用的术语中。

3.1.1 电导,绝缘,n——两电极之间(或试样中)总的体积和表面电流与两电极间直流电压之比。

3.1.1.1 讨论——绝缘体的电导是其电阻的倒数。

3.1.2 电导,表面,n——两电极间(试样表面)的电流与两电极间的直流电压之比。

3.1.2.1 讨论——(一些体积电导不可避免的包含在实际的测量中)表面电导是表面电阻的倒数。

3.1.3 电导,体积,n——两电极间试样体积范围内的电流与两电极间直流电压之比。

3.1.3.1 讨论——体积电导是体积电阻的倒数。

3.1.4 电导率,表面,n——表面电导乘以试样的表面尺寸比(电极间的距离除以电极的宽度,这规定了电流路径),如果两电极位于正方形材料的对边上,表面

电导率在数值上等于两电极间的表面电导。

4、测试方法概述

4.1 材料样品或电容器的电阻或电导是通过测量规定条件下的电流或电压降得到的。通过使用合适的电极系统有可能分别测量表面和体积电阻或电导。当所需

的试样和电极尺寸已知时,电阻率和电导率可以通过计算得到。

5、意义和使用

5.1 绝缘材料被用来隔绝电气系统中的部件和将部件与地隔绝,同时也为部件提供力学支撑。为了达到这个目的,希望部件的绝缘电阻在与可承受的力学、化学

和耐热性一致的前提下能够尽可能的高。由于绝缘电阻或电导包含了体积和表面电阻或电导,当试样与电极与其实际使用过程中的形状相同时,测量值最为有用。

表面电阻或电导随湿度变化很快,然而体积电阻或电导却变化很慢,尽管体积电阻或电导最终的变化可能更大。

5.2 电阻率或电导率能用来间接预测一些材料的低频介质击穿和介质损耗角,电阻率和电导率经常被用来间接地表征含水量、固化度、机械连接和各种类型的材

料退化。这些间接测量的有效性取决于理论或实验研究相关联的程度。表面电阻的下降可能导致电介质击穿电压的升高,因为电场强度降低了,或者导致电介质

击穿电压的降低,因为应力作用的面积减小了。

但是在通常意义上表面电阻率或电导率不是电绝缘材料的一种材料属性。

6、电极系统

6.1 制作电极的绝缘材料应该是一种容易应用、能与试样表面亲密接触,而且不因电极电阻或试样污染而引起明显误差。在测试条件下,电极材料应该能耐腐蚀。

对于组装试样的测试,例如通孔套管、电缆等等,采用的电极是试样的一部分或者是它的配件,绝缘电阻或电导的测量包含电极污染或配件材料的影响,而且在

实际使用中一般与试样性能有关。

6.1.1 接线柱和锥形针电极,提供了一种在刚性绝缘材料上施加电压来测量其电阻和电导性质的方法。这些电极在某种程度上模拟实际的使用条件,

       例如仪表盘和接线板上的接线柱。在绝缘材料的层压板表面树脂含量很高的情况下,采用锥针形电极得到的绝缘电阻可能比采用接线柱电极得到的小一些,这是锥形

       针电极与绝缘材料的接触更加紧密。测得的电阻或电导值受每根锥形针与绝缘材料接触、针的表面粗糙度以及绝缘材料上孔洞平滑度的影响。从不同试样得出结

      果的重复性不好。

6.1.2 金属条的主要设计目的是评价弹性胶带和很薄的固体试样的绝缘电和电导,这是一种非常简单和方便的控制电气质量的方法。当绝缘材料的宽度

       比厚度大得多时,这种布置在获得表面电阻或电导的近似值方面能够取得更加令人满意的效果。

6.1.3 具有商业应用的银漆(图4,图5和图6)具有很高的导电性,不论是空气干燥还是低温干燥的品种都具有能让水气渗透通过的多孔结构,因此施加电极后

       能对测试试样进行特定的条件处理。在研究电阻受湿度的影响和随温度的变化方面,这是一项非常有用的特征。然而,在使用导电涂料作为电极材料之前,必须

       确保涂料中的溶剂不会腐蚀材料,从而改变它的电气性质。配置好的刚毛刷可能会使保护电极获得相当平滑的边缘。然而,对于圆形电极,刻线圆盘和画电极轮

       廓线的银漆以及刷子包围区域的填料的使用使保护电极的边缘更加锋利。测试时可能会使用到一条窄的屏蔽胶带,避免了使用的压敏胶合剂污染试样表面。如果

       电极漆是喷射在上面的,可能还会使用到夹紧的外罩。

6.1.4 如果喷镀金属能与测试试样之间形成良好的粘接,测试时可能会使用它)。薄喷电极在能尽快投入使用方面具有一些优势,其多孔结构可

       能使试样能进行调整处理,但这点需要证实。必须使用窄带胶带或夹紧外罩使保护和被保护电极之间产生一条缝隙,使用不污染缝隙表面的胶带。

6.1.7 可以将分散在水或其他合适介质中的胶体石墨(图4)刷在无孔的薄片绝缘材料上形成风干的电极。可能会用到屏蔽胶带和夹紧的外罩(6.1.4)。这种电极

       材料的使用需要满足下列所有条件:

6.1.7.1 测试材料必须保证石墨涂层在测试前不会发生剥离。

6.1.7.2 测试材料必须不容易吸收水分。

6.1.7.3 对试样的处理必须在干燥的气氛中(程序B,实行D6054),而且测量必须在相同的气氛下进行

6.1.8 液态金属给出的测量结果令人满意,而且可能是有效电阻测量中获得与试样必要接触的最好方法。液态金属形成的上部电极应该受到不锈钢圈的限制,通

       过在离液态金属较远的一侧刨边使每个钢圈较低的边缘变得尖锐。


6.1.9 平板金属可以被用来测试常温和高温下的韧性材料和可压缩材料。它们可能是圆形或矩形的。为了保证与试样的紧密接触,通常需要相当大的压力。

       研究发现140-700KPa的压力能取得满意的效果。


6.1.9.1 在某些电池设计中发现将平板金属电极系统进行改进可以用来测量油脂或填料混合物。这些电池是预先装配的,而且要么将测试材料加入固定电极之间的电池中,要么将电极插入材料中直至电极间距达到预先确定的值。这些电池中

         电极的布置导致有效的电极区域和电极间距很难测量,每个电池常数K(与表一中的A/t因子等价)都能从下面的等式中获得:K=3.6πC=11.3C (1)


其中:K的单位是厘米C的单位是微微法拉,表示以空气为电介质的电极系统的电容,C的测试


符号:

A=采用特定布置下,测量电极的有效面积。

P=采用特定布置下,被保护电极的有效周长。

Rv=实测体积电阻,单位欧姆。

Gv=实测体积电导,单位西门子。

Rs=实测表面电阻,单位欧姆。

Gs=实测表面电导,单位西门子。

t=试样的平均厚度。


a,b=矩形电极的边长。

ln=自然对数所有试样尺寸均以厘米为单位。


6.1.10导电橡胶已作为电极材料使用,而且具有很快速和容易加在试样上以及从试样上移除的优点。由于电极仅在测试时使用,因此并不妨碍试样受环

        境影响的过程。导电橡胶材料必须置于适当的金属盘上,而且必须足够柔软,这样在施加适当压力时,电极与试样能获得有效的接触。

        注解1——有证据表明用导电橡胶电极获得的电导率值总比锡箔电极获得的小20-70%。当只要求数量级的精确性的时候,而且接触误差能忽略时,一组适当设计的导电橡胶电极能

        提供一种快速测定电导率和电阻率的方法。

6.1.11 测试电线和电缆的绝缘性时,水被广泛的用作电极。试样的两端必须露出水面,而且沿着绝缘物渗漏的长度可以忽略。是否需要在试样的每一端施加保护,

         可以参考特定电线和电缆的测试方法。为了实现标准化,可以向水中加入氯化钠形成浓度为1.0-1.1%的氯化钠溶液,从而保证足够的导电性。已有报道证实形成浓度为1.0-1.1%的氯化钠溶液,从而保证足够的导电性。已有报道证实


7、仪器设备的选择和测试方法

7.1 电源——需要稳定的直流电压。经证实,电池或其他的稳定直流电压适合使用。

7.2 保护电路——不论是用两个电极(没有保护)测量绝缘材料的电阻或是用三端系统(两个电极加上保护),都需要考虑测试仪器和测试试样之间的电气连接。

    如果测试试样离测试仪器有一段距离,或测试试样在潮湿环境下测试,或试样的1015电阻相对较高(10-10欧姆),在测试仪器和测试设备之间很容易存在寄生阻力

    路径。保护电路可以最小化这些寄生路径的干扰。

  7.2.1 有保护电极——用同轴电缆(其核连到被保护电极上,保护层连到保护电极上)在测试设备和测试试样之间建立保护良好的连接。此处并没有强制使用同

         轴电缆(其保护层连到保护电极上)作为无保护的导线,虽然其使用能减小背景噪声。


  7.2.2 无保护电极——用同轴电缆,其核连到一个电极上,保护层距离连核导线的终点约1cm左右


7.3 直接测量——用任何具有所需灵敏度和精度(通常10%足够)的设备都可以测量固定电压下通过试样的电流。有效的测量电流的设备包括静电计、带指示表

   的直流放大器以及电流计。附录X3中给出了典型的测量方法和电路。如果测试设备的刻度直接以欧姆为单位,测量电阻将不需要通过计算。

7.4 对比法——可能会使用惠斯特通桥回路来对比试样和标准电阻器的电阻。

7.5 精度和偏差的考量:

7.5.1通用——作为一项仪器选择的指南,相关的注意事项已总结列出在表二中,但这并不意味着所举例子是合适的选择。该表无意指出各种方法本身灵敏度

的极限和偏差,而是现代设备存在的明显的极限范围。在任何情况下,只有通过仔细的挑选和组合使用仪器设备,才能达到或超越这种极限。必须强调的是,考

虑的误差仅仅是仪表误差。而附录X1中讨论的误差是完全不同的。其与后者的联系是,表二的最后一列列出了采用各种方法通过被保护电极和保护系统间绝缘

电阻分流的电阻值。一般说来,该电阻值越小,不适当的分流引起偏差的概率越小。

注解2——不管采用何种测量方法,只有通过仔细分析所有的数据来源和误差,才能获得最高的精度。从电路组成元件出发建立测量方法或者获得完全集成的设备都是可行的。一般情

况下,采用高灵敏度电流计的测量方法比采用指示表和记录仪的方法需要更加稳固的安装。采用诸如电压表、电流计、直流放大器和静电计等指示器件的方法需要程度的人工调试,

而且方便读数,但是实验人员需要在某一特定时间读数。惠斯通电桥和电位计方法要求实验人员在保持平衡时聚精会神,但是特定时间的设置可以再空余

时间读取。


7.5.2.5 比较电桥——当探测器具有足够的灵敏度,计算电阻的最大百分误差是电桥各臂A、B和N百分误差的总和。当探测器的灵敏度是1mV每刻度线时,在

电桥上施加500V的电压,R=1GΩ,1000TΩ的电阻将会产生1刻度线的检测偏N差。假设忽略误差R和R,R=1GΩ,且其偏差为±2%,电桥与探测器的刻度

ABN线相称,此时可以测量100TΩ的电阻,且最大偏差为±6%。

7.6 许多制造商都能提供满足这种方法要求的组件或专用系统,可以参考已经提供仪器信息的系列公司的设备数据库。

8、取样参考适用材料规范作为取样的依据。

9、测试试样

9.1 绝缘电阻或电导的测定

9.1.1 当试样在实际使用中具有外形、电极和装配的要求时,测量取最大值。套管、电缆和电容器是一组典型的例子,测试电极作为试样的一部分以及试样正确

安装的方式。

9.1.2 对于固体材料,测试试样可能是任何实用的形式。最长使用的试样是平板、带、棒和管。图2中的电极配置可用于平板、棒、或内径超过20mm的硬管。图

3中的电极配置可用于片状材料的条或韧性的带。对于刚性的条状试样,可能不需要金属支撑。图6中的电极配置可用于平板、棒或管。用不同的电极配置比较材料经常是没有确切结果的,而且也是应该避免的。

9.2 体积电阻或电导的测定

9.2.1 测试试样可能具有任何实用的形式,必要时,可允许使用第三根电极来避免表面效应引起的误差。测试试样可能是平板、带或管的形式。图4、图7和图

8阐述了应用于平板或片状试样的电极配置。图5是管状试样上3个电极的径向截面积,其中1号电极是被保护电极,2号电极是由每个1号电极末端的圆环组

成的保护电极,两个环之间通过电路导通,3号电极是未保护电极。对于可忽略表面渗漏的材料,而且仅仅测试其体积电阻,可以省略保护圆环的使用。在测试

试样厚度为3mm的情况下,方便且适用于图4的合适尺寸如下:D=100mm,3D=88mm,D=76mm;或者D=50mm,D=38mm,D=25mm。在给定的灵敏

度下,对于高电阻率材料而言,大尺寸试样的测试结果更加精确。

9.2.2 按照与测试材料有关的测试方法之一D374测量试样的平均厚度。测试的关键点是均匀分布测量电极覆盖的区域。

9.2.3 电极没有必要一定具有如图4所示的圆形对称结构,虽然这种结构十分方便。被保护电极(1号)可以是圆形、方形或矩形,当需要计算体积电阻率或电导率所需的被保

护电极的有效面积时,可以具有现成的计算结果。圆形电极的直径、方形电极的边长或矩形电极的短边,至少是试样厚度的4倍。1号电极和2号电极之间的间

隙宽度应该足够大,这样才不至于由于两电极间的表面渗漏引起测量过程的误差这对于诸如静电计之类的高输入阻抗仪器尤其重要)。如果间隙是试样厚度的两倍,如9.3.3中所提及的那样,以便于试样可以用来测定表面电阻和表面电导,

由于电极延伸到间隙的中心,可以精确地测定1号电极的有效面积。如果在特殊条件下,需要更精确的测定1号电极的有效面积,通过附录X2可以获得间隙宽

度的修正值。3号电极可以具有任意形状,使其所有点至少离2号电极的内边缘的距离至少为试样厚度的2倍。

9.2.4 对于管状试样,1号电极应包围试样外侧,而且其轴线长度至少是试样壁厚的4倍。关于间隙宽度的注意事项与9.2.3中所述一样。2号电极由管状试样两端

的环绕电极组成,这两部分通过外部电路连接。这些部分的轴向长度至少应是试样壁厚的2倍。3号电极必须覆盖试样的内表面,轴向长度必须超过间隙外侧边

缘至少2个试样壁厚,管状试样可能采取绝缘线的形状或者电缆的形状。如果电极长度超出试样厚度的100倍,被保护电极的端部效应可以忽略不计,而

且也不需要精确控制保护电极之间的间距。因此,当水作为1号电极时,1号电极和2号电极之间的间距可能只有几厘米,使电极之间存在足够的表面电阻。在

这种情况下,没有对间隙宽度做修正。

9.3 表面电阻或电导的测定

9.3.1 测试试样可以具有任何实际的形状,与具体物体相一致,例如平板、带或管。


9.3.2配置是为体积电阻与其表面高度相关的试样所设计的。然而,对于刚性带而言,模塑和机械加工表面的组合一般使得到的结果不具有确定性。

当应用于宽度远大于厚度的试样时,图3的配置更加令人满意,因为切割边缘效应更小。因此,这种配置更适合于测试条带之类的薄试样,而不是测试相对较厚

的试样。若没有考虑到前文所述的局限性,图2和图3的配置不能用来测定表面电阻和电导。

9.3.3三电极配置可用于材料对比。1号电极和2号电极间的表面间隙的电阻或电导可通过采用1号电极作被保护电极、2号电极作保护电极

和3号电极作未保护电极直接测定得到。如此测定得到的电阻或电导实际上是1号电极和2号电极间表面电阻或电导与两电极间的一些体积电阻或电导并联的

结果。对于这种配置,除薄试样的表面间隙宽度g比材料厚度的2倍大得多外,g一般约为试样厚度的2倍。


11、表面清理

11.1 按D6054中的做法处理试样。

11.2 循环空气测试箱或E104、D5032中描述的方法对于控制相对湿度十分有用。

12、步骤

12.1 绝缘电阻或电导——在测试箱内正确的安装试样。如果测试箱与条件处理箱是同一个(推荐采用的步骤),试样应该在条件处理之前安装好。使用具有要求灵敏度和精度的一款设备进行测量(见附录X3)。除非另有说明,使用60s的充电时间和施加500±5V的电压。

12.2 体积电阻率或电导率——测量并记录电极尺寸和保护间隙的宽度g。计算电极的有效面积。使用具有要求灵敏度和精度的一款设备测量电阻。除非另有说明,使用60s的充电时间和施加500±5V的直流电压。

12.3 表面电阻或电导:

12.3.1 测量电极尺寸和电极间距g。使用具有要求灵敏度和精度的设备测量1号电极和2号电极间的表面电阻或电导。除非另有说明,使用60s的充电时间和施加500±5V的直流电压。

13、计算

13.1 用表1中的公式计算体积电阻率ρ和体积电导率γ。

13.2用表1中的公式计算表面电阻率ρ和表面电导率γ。

14、报告

14.1 报告下列所有信息:

14.1.1 材料的描述和标识(名称、等级、颜色、厂商等)。

14.1.2 测试试样的形状和尺寸。

±5%内,才能得到稳态值。其他情形下的测试,都被认为是表观上的。

15、精度和偏差

15.1 精度和偏差会内在的受到选择的方法、设备和试样的影响。对于其分析详见第7部分和第9部分,尤其是7.5.1-7.5.2.5。

16、关键词

16.1 直流电阻;绝缘电阻;表面电阻;表面电阻率;体积电阻;体积电阻率影响绝缘电阻或电导测量的因素X1.1 材料固有的变化——由于给定试样在类似测试条件下电阻的多变性以及试样中同材料的非均匀性,使测量结果通常无法在10%的范围内重现,甚至分散更广(在相同条件下,可能会得到10到1这个范围内的值。)

X1.2 温度——电绝缘材料的电阻随温度变化,而且该变化通常可用下式表示:m/tR=Be(X1.1)其中:R=电绝缘材料或体系的电阻或电阻率B=比例常数m=活化常数T=绝对温度(开尔文)该公式是阿尼乌斯公式和玻尔兹曼原理的简化形式,阿尼乌斯公式描述化学

反应的活化能和绝对温度的关系,玻尔兹曼原理是处理大量微小颗粒在热扰动下能量的统计分布的一般性原理。活化常数m是特定能量吸收过程的特征值,数

个这种过程可能同时存在于材料中,每一个都有不同的有效温度范围,因此需要几个m值来充分表征该材料。这些m值可以通过绘制电阻的自然对数与绝对温

度的倒数的曲线来得到,通过测量图形直线部分的斜率可得到所需的m值。这源于式X1.1,对其边取自然对数得到:LnR=LnB+m/T (X1.2)

电阻或电阻率的变化对应于绝对温度从T这些公式在一温度范围内有效,而且材料在此温度范围内不经历转变。由于转变

很少是明显的或者可预测的,因此,外推法很少是可靠的。作为一个推论,R的对数对1/T的图形偏离直线就是转变发生的证据。而且,在进行材料对比时,有

必要对所有材料感兴趣的方面进行测量。

注解X1.1——电绝缘材料的电阻可能会受到在温度中暴露时间的影响,因此,对4比测试需要等价的温度条件处理期。

注解X1.2——如果电绝缘材料在提高温度处理后显示了退化的迹象,该信息必须包含在测试数据中。

X1.3 温度和湿度——固体介电材料的绝缘电阻随温度升高而降低,如X1.2中描述的那样,随湿度升高而降低,体积电阻对温度变化尤其敏感,表面电阻随湿度

变化很快。这两种情况下,电阻都是呈指数变化。对于某一些材料,从25到100℃的温度变化可能导致绝缘电阻或电导变化100000倍,这通常是因为温度和湿度

含量变化的联合作用。温度变化的单独影响通常要小得多,从25%到90%的相对湿度的变化可能会改变绝缘电阻或电导1000000倍甚至更多。绝缘电阻或电导是

试样体积和表面电阻或电导的函数,而且表面电阻几乎随着相对湿度的变化而立即变化。因此,绝对有必要在条件处理期间保持温度和相对湿度在

很小的范围内,而且绝缘电阻或电导的测量要在的条件处理环境中进行。另一点不能忽视的是,当相对湿度超过90%时,条件处理体系可能导致温度和相对

湿度的波动,从而引起表面凝结。这个问题可以通过在略高温度下使用等价绝对湿度来避免,由于均衡湿度含量在温度变化较小时几乎保持不变。在确定湿度对

体积电阻或电导的影响时,需要延长条件处理期,因为电介质吸收水分的过程相对缓慢。一些试样需要数月才能达到平衡。在不能使用如此长的条件处理期时,

使用更薄的试样或者均衡态附近的对比测试可能是合理的选择,但是细节必须包含在测试报告中。

这种情况下,使用时间曲线或者进

行特殊研究以及进行独立决策都需要考虑充电时间。

X1.5 电压值

X1.5.1 试样的体积和表面电阻或电导可能都对电压敏感。在这种情况下,测量类似样品时,有必要使用相同的电压梯度,从而使测量值具有可比性。另外,施加

电压值应在电压至少5%的范围内,这是一个独立于X1.7.3的要求,X1.7.3中讨论了电压的调节和稳定,而且涉及可感知的试样电容。

X1.5.2 通常施加在完整试样上的测试电压是100,250,500,1000,2500,5000,10000和15000V。其中最常使用的是100和500V。高电压用来研究材料的电压-电阻或

电压-电导特征(使测试在工作电压或工作电压附近进行),或者提高测试的灵敏度。

X1.5.3 取决于湿度含量的一些材料的试样电阻或电导可能会受到施加电压极性的影响,由电解作用或者离子迁移引起的这种效果,尤其是在不均匀的场的作用

下更加明显,例如在电缆中发现内部导体的测试电压梯度比外部表面更大。在电解和离子迁移存在于试样中时,当相对于大电极而言的小测试电极电位为负时,

电阻更小。在这种情况下,需要根据测试试样的要求指明施加电压的极性。

X1.6 试样轮廓

X1.6.1 试样绝缘电阻或电导的测量值来源于其体积和表面电阻或电导的合成效果。由于组件的相对值随材料的不同而变化,通过使用图1、图2和图3的电极

系统对比不同材料通常是不确定的,如果通过使用这些电极体系之一测得材料A比材料B有更高的绝缘电阻,并不能保证在其应用中比B具有更高的电阻。

X1.6.2 有可能设计试样和合适的电极配置用于分别评估体积电阻或电导和同一试样的近似表面电阻或电导。一般说来,这要求至少3个如此安排的电极使我们

能够选择电极对,因为测量电阻或电导主要需要选择体积电流路径或表面电流路径,而不是将这两者都算上。

X1.7 测量电路的不足

X1.7.1 许多固体介电试样的绝缘电阻在标准实验条件下很高,接近或超过表2中给出的最大测量极限值。除非极度关注测量电路的绝缘性,得到的测量值更多

的是设备的极限值而不是材料本身。因此,可能由于试样分路过多,参考电阻或者电流测量设备引起未知的泄露电阻或电导和其他参数大小的变化,从而导致测量的误差。

X1.7.2 电解质、接触或者热电势可能存在于测量电路中,来源于外界的泄露可能造成虚假电动势。除非在电流计和分流器的低电阻电路中,热电势一般并不重要。

当热电势存在时,检流计零点会出现随机的漂移。由气流造成的缓慢漂移可能很麻烦。电解电动势通常与潮湿试样和不同金属有关,但是当几片相同金属与潮湿

试样相接触时,高电阻探测器的保护电路中可以得到20mV或更高的电动势。如果电压施加在保护电极和被保护电极之间,在电压移除之后,极化电动势可能仍

然存在。真实的接触电动势只能通过静电计检测,并且它不是误差的来源。术语“虚假电动势"有时适用于电解电动势。为了保证不产生任何因素引起的虚假电

动势,在施加电压之前和移除电压之后都应该能观测到检测设备的偏差。如果这两者的偏差一样或者接近一样,可以对测量电阻或电导进行小范围的修正。如果

两者的偏差差别很大,或者接近测量的偏差,那么将有必要找出并且消除虚假电动势的来源。用于连接的屏蔽电缆中电容的变化能导致严重的困难。

X1.7.3 其中包含可检测的试样电容,施加电压的监控以及瞬时稳定性也应这样使电阻和电导的测量能达到规定的精度。外加电压短时间的瞬变和相对长时间的漂

移可能导致虚假电容的充放电,这将极大的影响测量的精度。尤其在电流测量手段中,这是一个很严重的问题。仪器测量的电流来源于电压瞬变,关系式为I=CxdV/dt。指针偏转的幅度和速率取决于下列因素:0

X1.7.3.1 试样的电容

X1.7.3.2 测量电流的大小

X1.7.3.3 电压瞬变的大小和持续时间,以及变化速率

X1.7.3.4 所使用的稳定电路提供具有各种特征传入瞬变的恒定电压的能力。

X1.7.3.5 与电流测试仪器的周期和衰减相比,能提供恒定时间的完整测试电路。

X1.7.4 电流测试仪器范围的改变可能会引入电流瞬变



产品咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
联系方式

邮箱:790261875@qq.com

地址:北京市延庆区中关村延庆园东环路2号楼1066室

咨询热线

(周一至周日9:00- 19:00)

在线咨询
  • 微信公众号

Copyright©2022 北京中科微纳精密仪器有限公司 All Right Reserved    备案号:京ICP备2021034692号-3    sitemap.xml
技术支持:化工仪器网    管理登陆